V = 1205.4 (6) Å³

Mo $K\alpha$ radiation

 $0.6 \times 0.4 \times 0.4 \ \text{mm}$

3 standard reflections

every 97 reflections

intensity decay: <1%

H-atom parameters constrained

 $\mu = 0.41 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.057$

8 restraints

 $\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N'-Bis(2-ammoniobenzyl)ethane-1,2diammonium_nitrate_perchlorate (1/1.5/2.5)

Luis Angel Garza Rodríguez,^a Sylvain Bernès,^b Blanca Nájera Martínez,^a Perla Elizondo Martínez^a and Nancy Pérez Rodríguez^a*

^aLaboratorio de Química Industrial, CELAES, Facultad de Ciencias Químicas, UANL, Pedro de Alba S/N, 66451 San Nicolás de los Garza, NL, Mexico, and ^bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico

Correspondence e-mail: sylvain_bernes@hotmail.com

Received 8 October 2009; accepted 28 October 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.050; wR factor = 0.119; data-to-parameter ratio = 9.7.

The title compound, $C_{16}H_{26}N_4^{4+}\cdot 2.5CIO_4^{-}\cdot 1.5NO_3^{-}$, is an organic salt in which the cation is a fully protonated tetramine. The cation lies on an inversion center and, as a consequence, both benzene rings are parallel. The central chain is found in an all-*trans* arrangement, a conformation different from that observed in the crystal structure of the non-protonated molecule. The charges are balanced by a mixture of nitrate and perchlorate ions. One site is occupied by an ordered perchlorate ion, while the other contains both nitrate and perchlorate ions, with occupancies of 0.75 and 0.25, respectively. In the crystal, the NH₂⁺ groups of the cation form N– H···O hydrogen bonds with the anions. The NH₃⁺ groups also behave as donor groups, allowing the building of chains along [100], alternating cations and disordered anions being connected *via* N–H···O hydrogen bonds.

Related literature

For the structure of the free tetramine, see: Rodríguez de Barbarín *et al.* (2007). For the use of polyaza ligands for depolymerization of poly(ethylene terephthalate), see: Carta *et al.* (2003); Parra *et al.* (2004); Pohorely *et al.* (2006).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{26}N_4^{\ 4+}\cdot 2.5\text{CIO}_4^{\ -}\cdot 1.5\text{NO}_3^{\ -}\\ M_r = 616.05\\ \text{Monoclinic, $P2_1/n$}\\ a = 8.427\ (3)\ \text{\AA}\\ b = 12.637\ (3)\ \text{\AA}\\ c = 11.834\ (3)\ \text{\AA}\\ \beta = 106.97\ (2)^\circ \end{array}$

Data collection

Siemens P4 diffractometer Absorption correction: none 6392 measured reflections 2125 independent reflections 1757 reflections with $I > 2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.119$ S = 1.142125 reflections 218 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N9−H9A···O2	0.90	2.05	2.872 (4)	151
N9−H9 <i>B</i> ···O7	0.90	2.02	2.89 (5)	163
N9−H9 <i>B</i> ···O13	0.90	1.98	2.836 (13)	157
$N1 - H1A \cdots O5^{i}$	0.89	2.04	2.91 (3)	165
$N1-H1A\cdots O12^{i}$	0.89	2.05	2.920 (13)	164
$N1 - H1B \cdot \cdot \cdot O8^{ii}$	0.89	1.90	2.78 (2)	170
$N1 - H1B \cdot \cdot \cdot O14^{ii}$	0.89	2.14	3.026 (11)	174
$N1 - H1C \cdots O1^{iii}$	0.89	2.39	3.207 (4)	153

Symmetry codes: (i) x - 1, y, z; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x, -y + 1, -z + 1.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXTL-Plus* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL-Plus*; molecular graphics: *SHELXTL-Plus* and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL-Plus*.

The authors thank FCQ-UANL for supporting this work (Project No. 03–6375-QAA-08–017)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2008).

References

Carta, D., Cao, G. & D'Angeli, C. (2003). Environ. Sci. Pollut. Res. Int. 10, 390–394.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Parra, J. B., Ania, C. O., Arenillas, A., Rubiera, F. & Pis, J. J. (2004). Appl. Surf. Sci. 238, 304–308.
- Pohorely, M., Vosecky, M., Hejdova, P., Puncochar, M., Skoblja, S., Staf, M., Vosta, J., Koutsky, B. & Svoboda, K. (2006). *Fuel*, 85, 2458–2468.
- Rodríguez de Barbarín, C., Bernès, S., Nájera, B., Elizondo, P. & Cerda, P. (2007). Acta Cryst. E63, 0549–0550.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2009). E65, o2995 [doi:10.1107/S160053680904519X]

N,N'-Bis(2-ammoniobenzyl)ethane-1,2-diammonium-nitrate-perchlorate (1/1.5/2.5)

L. A. Garza Rodríguez, S. Bernès, B. Nájera Martínez, P. Elizondo Martínez and N. Pérez Rodríguez

Comment

Poly(ethylene terephthalate) (PET) is a thermoplastic material, which has been increasingly used in the industry during the last decades. Its low degradability makes this material highly contaminant to the environment (Carta *et al.*, 2003). Currently, many efforts are devoted to reduce the amount of waste PET that reaches the landfillings. Some processes are able to recycle PET into highly valued carbon materials (Parra *et al.*, 2004), used to generate heat and electricity (Pohorely *et al.*, 2006). An interesting approach known as 'chemical recycling' is based on the depolymerization of PET through solvolytic chain cleavage. Five processes have been probed, with different depolymerizing agents: methanolysis, glycolysis, hydrolysis, aminolysis and ammonolysis. Several reactions used catalyst, among them zinc compounds.

Our group is involved in the search for reactions relevant to the chemical degradation of PET, using acyclic polyaza zinc complexes $ZnLX_2$ ($X = ClO_4$, NO_3 ; L = polyaza ligand), which gave excellent results. The title salt appeared during an attempt to prepare a bimetallic catalyst. Previous works showed that complex $CuL[CuCl_4]$ can be obtained as the product of the transmetallation of $MnL(NO_3)_2$ with $Cu(ClO_4)_2.6H_2O$ in ethanol, with an excess of aqueous HCl. The same transmetallation procedure, using $Zn(ClO_4)_2.6H_2O$ in acidic ethanol afforded pale yellow crystals as a subproduct, which were identified as the title salt by X-ray diffraction.

The salt is composed of a tetracation and a mixture of nitrate and perchlorate anions (Fig. 1). The presence of both anions in the material was confirmed by IR spectroscopy, as spectra include characteristic vibrations for these ions. The cation is fully protonated and is placed on an inversion center. As a consequence, benzene rings are parallel by symmetry. The 6-membered chain linking the benzene fragments is found in the all-*trans* extended conformation, contrasting with the *trans-gauche-trans* conformation observed in the solid-sate for the non-protonated tetramine (Rodríguez de Barbarín *et al.*, 2007). Anions are found in two sites. One site is occupied by a non disordered perchlorate, Cl1. The other site contains a mixture of nitrate (N11) and perchlorate (Cl2), with occupancies 3/4 and 1/4, respectively (Fig. 1, inset). Because they are involved in hydrogen bonds, anions do not present orientational disorder.

 NH_2^+ and NH_3^+ groups have different functions regarding hydrogen bonding in the crystal. NH_2^+ donors groups are connected to anions within the asymmetric unit, forming N—H···O hydrogen bonds (Fig. 1). NH_3^+ groups also serve as donors for N—H···O hydrogen bonds, connecting symmetry related cations *via* anions, to form a one-dimensional supra-molecular structure where cations and anions alternate in the [100] direction (Fig. 2).

Experimental

A 25 ml flask was charged with $MnL(NO_3)_2$ [279 mg; *L* is the free tetramine corresponding to the title cation (Rodríguez de Barbarín *et al.*, 2007)] and ethanol (9 ml) and the mixture was stirred for 5 min., giving a white suspension. Salt $Zn(ClO_4)_2.6H_2O$ was added (919 mg) and the reaction further stirred for 3 min., affording a quite clear solution. Immediately, 200 mg of concentrated HCl was added, and the mixture turned to a translucent light yellow solution, which was

cooled for 4 d. Light yellow-green crystals were formed over this period, which were isolated and washed with cold ethanol, diethyl ether and finally air dried. Yield 68% (26.2 mg), m.p. 160 °C (dec.). IR (KBr, cm⁻¹) v(CH₂) 2942, 2787, v(NO₃) 1383, v(ClO₄) 1084, 940.

Refinement

All H atoms were placed in idealized positions, with bond lengths fixed to 0.97 (methylene CH₂), 0.93 (aromatic), 0.90 (NH_2^+) and 0.89 Å (NH_3^+) . Isotropic displacement parameters for H atoms were calculated from displacements of parent atoms. Site occupation factors for nitrate N11 and perchlorate Cl2 anions (Fig. 1, inset) were first roughly refined and finally fixed to 3/4 and 1/4 in order to match the charges balance. The geometry for the nitrate ion was restrained to be flat and N—O bond lengths were restrained to 1.23 (1) Å. For the perchlorate, Cl—O bond lengths were restrained to 1.41 (1) Å.

Figures

Fig. 1. The structure of the title compound, with displacement ellipsoids at the 30% probability level. Dashed lines represent hydrogen bonds in the asymmetric unit. The inset shows the anionic site with two disordered anions: nitrate N11 (occupancy = 3/4) and perchlorate Cl2 (occupancy = 1/4).

Fig. 2. A part of the crystal structure of the title compound, with hydrogen bonds represented with dashed lines. Green anions are perchlorate and blue anions are nitrate. For the sake of clarity, some perchlorate ions have been omitted (hanging contacts). The crystal is viewed almost along [010].

N,N'-Bis(2-ammoniobenzyl)ethane-1,2-diammonium-nitrate- perchlorate (1/1.5/2.5)

Crystal data

$C_{16}H_{26}N_4^{4+} \cdot 2.5ClO_4^{-} \cdot 1.5NO_3^{-}$	$F_{000} = 638$
$M_r = 616.05$	$D_{\rm x} = 1.697 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 73 reflections
a = 8.427 (3) Å	$\theta = 5.0 - 12.4^{\circ}$
b = 12.637 (3) Å	$\mu = 0.41 \text{ mm}^{-1}$
c = 11.834 (3) Å	T = 298 K
$\beta = 106.97 \ (2)^{\circ}$	Cell measurement pressure: 101(2) kPa
V = 1205.4 (6) Å ³	Irregular, pale yellow
Z = 2	$0.6 \times 0.4 \times 0.4 \text{ mm}$
Data collection	

 $R_{int} = 0.057$

Siemens P4

diffractometer

Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.1^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.4^{\circ}$
T = 298 K	$h = -10 \rightarrow 10$
P = 101(2) kPa	$k = -15 \rightarrow 15$
ω scans	$l = -14 \rightarrow 14$
Absorption correction: none	3 standard reflections
6392 measured reflections	every 97 reflections
2125 independent reflections	intensity decay: <1%
1757 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_0^2) + (0.0221P)^2 + 1.6735P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.14	$(\Delta/\sigma)_{max} < 0.001$
2125 reflections	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
218 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$
8 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

											. 2
Fractional	atomic	coordinates	and	isotronic c	r panis	alont	isotronic	displace	nont	naramotors	(\dot{A}^2)
racionai	uiomic	coorainaies	unu	isonopic c	i equi	uieni	isonopic	uispiacei	nemi	Jurumeters	(n)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
N1	-0.1084 (4)	0.6532 (2)	0.2742 (2)	0.0430 (7)	
H1A	-0.2090	0.6242	0.2538	0.065*	
H1B	-0.1163	0.7215	0.2897	0.065*	
H1C	-0.0445	0.6208	0.3381	0.065*	
C2	-0.0347 (4)	0.6416 (2)	0.1763 (3)	0.0326 (7)	
C3	-0.1440 (4)	0.6359 (2)	0.0652 (3)	0.0399 (8)	
H3A	-0.2578	0.6371	0.0546	0.048*	
C4	-0.0826 (5)	0.6283 (2)	-0.0310 (3)	0.0434 (8)	
H4A	-0.1553	0.6235	-0.1070	0.052*	
C5	0.0852 (5)	0.6280 (3)	-0.0143 (3)	0.0430 (8)	
H5A	0.1263	0.6245	-0.0791	0.052*	
C6	0.1929 (4)	0.6327 (2)	0.0979 (3)	0.0394 (8)	
H6A	0.3066	0.6313	0.1082	0.047*	
C7	0.1348 (4)	0.6396 (2)	0.1969 (3)	0.0311 (7)	
C8	0.2604 (4)	0.6487 (2)	0.3159 (3)	0.0371 (7)	
H8A	0.2095	0.6834	0.3696	0.044*	
H8B	0.3513	0.6928	0.3091	0.044*	
N9	0.3283 (3)	0.5437 (2)	0.3671 (2)	0.0350 (6)	
H9A	0.2457	0.5053	0.3806	0.042*	
H9B	0.3660	0.5085	0.3140	0.042*	

C10	0.4644 (4)	0.5534 (3)	0.4787 (3)	0.0380 (8)	
H10A	0.4225	0.5862	0.5384	0.046*	
H10B	0.5509	0.5985	0.4662	0.046*	
Cl1	-0.00237 (10)	0.35712 (6)	0.40133 (7)	0.0396 (2)	
01	-0.1221 (4)	0.3829 (3)	0.4604 (3)	0.0752 (9)	
O2	0.0116 (4)	0.4419 (2)	0.3253 (2)	0.0643 (8)	
O3	0.1540 (4)	0.3438 (2)	0.4887 (2)	0.0648 (8)	
O4	-0.0495 (4)	0.2635 (2)	0.3332 (3)	0.0647 (8)	
C12	0.5512 (9)	0.4371 (6)	0.1804 (8)	0.0358 (15)	0.25
O5	0.587 (4)	0.5336 (15)	0.244 (2)	0.039 (7)	0.25
O6	0.5011 (19)	0.4701 (12)	0.0603 (8)	0.083 (4)	0.25
07	0.415 (4)	0.394 (4)	0.211 (4)	0.083 (14)	0.25
08	0.675 (2)	0.3628 (14)	0.186 (2)	0.052 (5)	0.25
N11	0.5525 (14)	0.4327 (9)	0.2076 (9)	0.068 (4)	0.75
O12	0.5925 (19)	0.5250 (7)	0.2380 (11)	0.071 (4)	0.75
O13	0.4469 (14)	0.3860 (9)	0.2416 (13)	0.056 (2)	0.75
O14	0.6277 (12)	0.3811 (8)	0.1526 (9)	0.099 (3)	0.75

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0417 (16)	0.0511 (17)	0.0434 (15)	0.0065 (14)	0.0236 (13)	0.0043 (13)
C2	0.0406 (18)	0.0254 (14)	0.0364 (16)	0.0035 (13)	0.0186 (14)	0.0037 (13)
C3	0.0373 (18)	0.0331 (16)	0.0472 (19)	0.0030 (14)	0.0089 (15)	0.0045 (15)
C4	0.062 (2)	0.0306 (16)	0.0344 (17)	0.0060 (16)	0.0086 (16)	0.0029 (14)
C5	0.065 (3)	0.0361 (18)	0.0336 (17)	0.0020 (17)	0.0231 (17)	0.0038 (14)
C6	0.0451 (19)	0.0333 (16)	0.0475 (18)	-0.0014 (15)	0.0255 (16)	0.0056 (15)
C7	0.0393 (18)	0.0221 (14)	0.0347 (15)	-0.0016 (13)	0.0153 (13)	0.0033 (12)
C8	0.0392 (18)	0.0305 (16)	0.0421 (17)	-0.0037 (14)	0.0128 (15)	-0.0009 (14)
N9	0.0333 (15)	0.0368 (14)	0.0337 (13)	-0.0012 (11)	0.0081 (12)	-0.0022 (11)
C10	0.0333 (18)	0.0418 (18)	0.0355 (17)	-0.0007 (14)	0.0047 (14)	-0.0050 (14)
Cl1	0.0461 (5)	0.0334 (4)	0.0467 (5)	-0.0010 (4)	0.0250 (4)	0.0020 (3)
01	0.069 (2)	0.088 (2)	0.089 (2)	0.0045 (17)	0.0545 (18)	-0.0055 (18)
02	0.084 (2)	0.0519 (16)	0.0603 (16)	-0.0161 (15)	0.0263 (15)	0.0158 (13)
O3	0.0577 (18)	0.0691 (18)	0.0606 (16)	0.0068 (15)	0.0065 (14)	-0.0013 (14)
O4	0.0669 (19)	0.0407 (14)	0.086 (2)	-0.0074 (13)	0.0213 (16)	-0.0149 (14)
Cl2	0.028 (3)	0.033 (3)	0.051 (3)	-0.006 (2)	0.018 (2)	-0.007 (2)
05	0.039 (13)	0.049 (16)	0.039 (9)	0.007 (10)	0.026 (9)	0.002 (9)
O6	0.105 (11)	0.110 (10)	0.037 (6)	-0.004 (9)	0.027 (7)	0.017 (7)
07	0.059 (14)	0.12 (2)	0.08 (3)	-0.036 (15)	0.030 (17)	-0.020 (16)
08	0.029 (7)	0.032 (6)	0.094 (12)	0.010 (6)	0.019 (7)	-0.005 (7)
N11	0.070 (6)	0.079 (7)	0.060 (6)	0.024 (5)	0.026 (4)	-0.002 (4)
012	0.082 (8)	0.029 (4)	0.118 (7)	-0.005 (4)	0.055 (6)	-0.006 (4)
013	0.060 (5)	0.052 (3)	0.062 (6)	-0.016 (3)	0.028 (5)	-0.003 (3)
O14	0.104 (7)	0.097 (5)	0.122 (8)	0.031 (4)	0.075 (6)	-0.015 (5)
Geometric par	ameters (Å, °)					

N1—H1A	0.8900	N9—H9A	0.9000
N1—H1B	0.8900	N9—H9B	0.9000
N1—H1C	0.8900	C10-C10 ⁱ	1.503 (6)
C2—C3	1.369 (4)	C10—H10A	0.9700
C2—C7	1.378 (4)	C10—H10B	0.9700
C3—C4	1.385 (5)	Cl1—O4	1.421 (3)
С3—НЗА	0.9300	Cl1—O1	1.423 (3)
C4—C5	1.369 (5)	Cl1—O2	1.426 (3)
C4—H4A	0.9300	Cl1—O3	1.428 (3)
С5—С6	1.374 (5)	Cl2—O8	1.389 (9)
С5—Н5А	0.9300	Cl2—07	1.409 (10)
C6—C7	1.398 (4)	Cl2—O5	1.417 (10)
С6—Н6А	0.9300	Cl2—O6	1.422 (9)
C7—C8	1 498 (4)	N11-014	1 222 (8)
C8—N9	1.501 (4)	N11-013	1.229 (8)
C8—H8A	0.9700	N11-012	1 238 (8)
C8—H8B	0.9700		1.200 (0)
C2—N1—H1A	109.5	H8A—C8—H8B	107.8
C2—N1—H1B	109.5	C10—N9—C8	113.1 (2)
H1A = N1 = H1B	109.5	C10—N9—H9A	109.0
C2-N1-H1C	109.5	C8—N9—H9A	109.0
H1A = N1 = H1C	109.5	C10—N9—H9B	109.0
H1B—N1—H1C	109.5	C8—N9—H9B	109.0
C_{3} C_{2} C_{7}	122.8 (3)	H9A_N9_H9B	107.8
C3—C2—N1	116 1 (3)	$N_{0} = C_{10} = C_{10}^{i}$	110 7 (3)
C7—C2—N1	121.0 (3)	N9-C10-H10A	109.5
C2—C3—C4	119.0 (3)	$C10^{i}$ $C10$ $H10^{A}$	109.5
C2—C3—H3A	120.5	N9-C10-H10B	109.5
C4—C3—H3A	120.5	$C10^{i}$ $C10$ $H10B$	109.5
$C_{5} - C_{4} - C_{3}$	120.0 (3)	H10A-C10-H10B	109.5
$C_5 - C_4 - H_4 A$	120.0	04-C11-01	110 36 (19)
$C_3 - C_4 - H_4 \Delta$	120.0	04-01-02	109.21(17)
C4-C5-C6	120.0 120.2(3)	01 - C11 - 02	109.21(17) 109.82(19)
C4-C5-H5A	119.9	04-01-02	109.02(17)
C6_C5_H5A	119.9	01 - C11 - 03	107.96(19)
C5-C6-C7	121.2 (3)	0^{2} - Cl1 - O3	107.90(19) 108.46(19)
C5-C6-H6A	119.4	08-012-07	100.40(1)
C7_C6_H6A	119.4	08-012-05	112(2)
$C_{7} = C_{0} = 10 \text{ K}$	110.4	07-012-05	121.0(17) 105(3)
$C_2 - C_7 - C_8$	125.2 (3)	08-012-06	103(3)
$C_2 - C_7 - C_8$	123.2(3) 1170(3)	07 C12 06	104.3(13)
C_{1}^{-} C_{2}^{-} C_{3}^{-} C_{3	117.9(3) 113.2(2)	05-012-06	110(2) 1034(13)
$C_7 = C_8 = H_8 \Lambda$	108.0	014 N11 013	103.4(13)
$V_{1} = C_{0} = H_{0}A$	108.9	014N11012	117.1(12) 121.2(12)
C7 C8 H8P	100.7	013 N11 012	121.2(12) 121.2(12)
	100.7	015-111-012	121.3 (12)
	100.7		
C'/C2C3C4	-0.3 (5)	C5—C6—C7—C2	-0.1 (4)
N1—C2—C3—C4	178.0 (3)	C5—C6—C7—C8	-177.7 (3)

G2 G2 G4 G5	0.0 (5)		aa = (a)
C2-C3-C4-C5	-0.8 (5)	C2—C/—C8—N9	98.7 (3)
C3—C4—C5—C6	1.5 (5)	C6—C7—C8—N9	-83.9 (3)
C4—C5—C6—C7	-1.0 (5)	C7—C8—N9—C10	174.1 (3)
C3—C2—C7—C6	0.7 (4)	C8—N9—C10—C10 ⁱ	-175.9 (3)
N1—C2—C7—C6	-177.5 (3)	08—Cl2—O6—O6 ⁱⁱ	-79 (5)
C3—C2—C7—C8	178.2 (3)	07—Cl2—O6—O6 ⁱⁱ	160 (6)
N1—C2—C7—C8	-0.1 (4)	O5—Cl2—O6—O6 ⁱⁱ	48 (6)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N1—H1C…O2	0.89	2.32	2.856 (4)	118
N1—H1B···O13 ⁱⁱⁱ	0.89	2.61	3.270 (13)	132
N9—H9B…O5	0.90	2.27	2.96 (3)	133
N9—H9B…O12	0.90	2.35	3.055 (15)	136
N9—H9A…O2	0.90	2.05	2.872 (4)	151
N9—H9A…O3	0.90	2.64	3.441 (4)	149
N9—H9B…O7	0.90	2.02	2.89 (5)	163
N9—H9B…O13	0.90	1.98	2.836 (13)	157
N1—H1A···O5 ^{iv}	0.89	2.04	2.91 (3)	165
N1—H1A···O12 ^{iv}	0.89	2.05	2.920 (13)	164
N1—H1B····O8 ⁱⁱⁱ	0.89	1.90	2.78 (2)	170
N1—H1B···O14 ⁱⁱⁱ	0.89	2.14	3.026 (11)	174
N1— $H1C$ ···O1 ^v	0.89	2.39	3.207 (4)	153

Symmetry codes: (iii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iv) *x*-1, *y*, *z*; (v) -*x*, -*y*+1, -*z*+1.

Fig. 1

